Transistor

Transistor

Assorted discrete transistors. Packages in order from top to bottom: TO-3, TO-126, TO-92,SOT-23.
A transistor is a semiconductor device used to amplify or switch electronic signals andelectrical power. It is composed ofsemiconductor material usually with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.
The transistor is the fundamental building block of modern electronic devices, and is ubiquitous in modern electronic systems.Julius Edgar Lilienfeld patented a field-effect transistor in 1926[1] but it was not possible to actually construct a working device at that time. The first practically implemented device was a point-contact transistor invented in 1947 by American physicists John Bardeen,Walter Brattain, and William Shockley. The transistor revolutionized the field of electronics, and paved the way for smaller and cheaper radios, calculators, andcomputers, among other things. The transistor is on the list of IEEE milestones in electronics,[2] and Bardeen, Brattain, and Shockley shared the 1956 Nobel Prize in Physics for their achievement.[3]
Most transistors are made from very puresilicon or germanium, but certain othersemiconductor materials can also be used. A transistor may have only one kind of charge carrier, in a field effect transistor, or may have two kinds of charge carriers in bipolar junction transistor devices. Compared with the vacuum tube, transistors are generally smaller, and require less power to operate. Certain vacuum tubes have advantages over transistors at very high operating frequencies or high operating voltages. Many types of transistors are made to standardized specifications by multiple manufacturers.

HistoryEdit

A replica of the first working transistor.
The thermionic triode, a vacuum tubeinvented in 1907, enabled amplified radiotechnology and long-distance telephony. The triode, however, was a fragile device that consumed a substantial amount of power. In 1909 physicist William Eccles discovered the crystal diode oscillator.[4] German physicistJulius Edgar Lilienfeld filed a patent for afield-effect transistor (FET) in Canada in 1925, which was intended to be a solid-statereplacement for the triode.[5][6] Lilienfeld also filed identical patents in the United States in 1926[7] and 1928.[8][9] However, Lilienfeld did not publish any research articles about his devices nor did his patents cite any specific examples of a working prototype. Because the production of high-quality semiconductor materials was still decades away, Lilienfeld's solid-state amplifier ideas would not have found practical use in the 1920s and 1930s, even if such a device had been built.[10] In 1934, German inventor Oskar Heil patented a similar device in Europe.[11]
From November 17, 1947, to December 23, 1947, John Bardeen and Walter Brattain atAT&T's Bell Labs in Murray Hill, New Jersey of the United States performed experiments and observed that when two gold point contacts were applied to a crystal of germanium, a signal was produced with the output power greater than the input.[12] Solid State Physics Group leader William Shockley saw the potential in this, and over the next few months worked to greatly expand the knowledge of semiconductors. The term transistor was coined by John R. Pierce as a contraction of the term transresistance.[13][14][15] According to Lillian Hoddeson and Vicki Daitch, authors of a biography of John Bardeen, Shockley had proposed that Bell Labs' first patent for a transistor should be based on the field-effect and that he be named as the inventor. Having unearthed Lilienfeld’s patents that went into obscurity years earlier, lawyers at Bell Labs advised against Shockley's proposal because the idea of a field-effect transistor that used an electric field as a "grid" was not new. Instead, what Bardeen, Brattain, and Shockley invented in 1947 was the first point-contact transistor.[10] In acknowledgement of this accomplishment, Shockley, Bardeen, and Brattain were jointly awarded the 1956 Nobel Prize in Physics "for their researches on semiconductors and their discovery of the transistor effect".[16][17]
 
Herbert F. Mataré (1950)
In 1948, the point-contact transistor was independently invented by German physicistsHerbert Mataré and Heinrich Welker while working at the Compagnie des Freins et Signaux, a Westinghouse subsidiary located inParis. Mataré had previous experience in developing crystal rectifiers from silicon and germanium in the German radar effort duringWorld War II. Using this knowledge, he began researching the phenomenon of "interference" in 1947. By June 1948, witnessing currents flowing through point-contacts, Mataré produced consistent results using samples of germanium produced by Welker, similar to what Bardeen and Brattain had accomplished earlier in December 1947. Realizing that Bell Labs' scientists had already invented the transistor before them, the company rushed to get its "transistron" into production for amplified use in France's telephone network.[18]
The first bipolar junction transistors were invented by Bell Labs' William Shockley, which applied for patent (2,569,347) on June 26, 1948. On April 12, 1950, Bell Labs chemistsGordon Teal and Morgan Sparks had successfully produced a working bipolar NPN junction amplifying germanium transistor. Bell Labs had made this new "sandwich" transistor discovery announcement, in a press release on July 4, 1951.[19][20]
 
Philco surface-barrier transistor developed and produced in 1953
The first high-frequency transistor was thesurface-barrier germanium transistordeveloped by Philco in 1953, capable of operating up to 60 MHz.[21] These were made by etching depressions into an N-type germanium base from both sides with jets ofIndium(III) sulfate until it was a few ten-thousandths of an inch thick. Indiumelectroplated into the depressions formed the collector and emitter.[22][23]
The first "prototype" pocket transistor radiowas shown by INTERMETALL (a company founded by Herbert Mataré in 1952) at theInternationale Funkausstellung Düsseldorfbetween August 29, 1953 and September 9, 1953.[24]
The first "production" pocket transistor radio was the Regency TR-1, released in October 1954[17]. Produced as a joint venture between the Regency Division of Industrial Development Engineering Associates, I.D.E.A. and Texas Instruments of Dallas Texas, the TR-1 was manufactured in Indianapolis, Indiana. It was a near pocket-sized radio featuring 4 transistors and one germanium diode. The industrial design was outsourced to the Chicago firm of Painter, Teague and Petertil. It was initially released in one of four different colours: black, bone white, red, and gray. Other colours were to shortly follow.[25][26][27]
The first "production" all-transistor car radio was developed by Chrysler and Philcocorporations and it was announced in the April 28th 1955 edition of the Wall Street Journal. Chrysler had made the all-transistor car radio, Mopar model 914HR, available as an option starting in fall 1955 for its new line of 1956 Chrysler and Imperial cars, which first hit the dealership showroom floors on October 21, 1955.[28][29][30]
The first working silicon transistor was developed at Bell Labs on January 26, 1954 byMorris Tanenbaum. The first commercial silicon transistor was produced by Texas Instruments in 1954. This was the work ofGordon Teal, an expert in growing crystals of high purity, who had previously worked at Bell Labs.[31][32][33] The first MOSFET actually built was by Kahng and Atalla at Bell Labs in 1960.[34]

ImportanceEdit

A Darlington transistor opened up so the actual transistor chip (the small square) can be seen inside. A Darlington transistor is effectively two transistors on the same chip. One transistor is much larger than the other, but both are large in comparison to transistors in large-scale integration because this particular example is intended for power applications.
The transistor is the key active component in practically all modern electronics. Many consider it to be one of the greatest inventions of the 20th century.[35] Its importance in today's society rests on its ability to be mass-produced using a highly automated process (semiconductor device fabrication) that achieves astonishingly low per-transistor costs. The invention of the first transistor at Bell Labs was named an IEEE Milestone in 2009.[36]
Although several companies each produce over a billion individually packaged (known asdiscrete) transistors every year,[37] the vast majority of transistors are now produced inintegrated circuits (often shortened to IC,microchips or simply chips), along withdiodes, resistors, capacitors and otherelectronic components, to produce complete electronic circuits. A logic gate consists of up to about twenty transistors whereas an advanced microprocessor, as of 2009, can use as many as 3 billion transistors (MOSFETs).[38] "About 60 million transistors were built in 2002… for [each] man, woman, and child on Earth."[39]
The transistor's low cost, flexibility, and reliability have made it a ubiquitous device. Transistorized mechatronic circuits have replaced electromechanical devices in controlling appliances and machinery. It is often easier and cheaper to use a standardmicrocontroller and write a computer programto carry out a control function than to design an equivalent mechanical system to control that same function.

Simplified operationEdit

A simple circuit diagram to show the labels of a n–p–n bipolar transistor.
The essential usefulness of a transistor comes from its ability to use a small signal applied between one pair of its terminals to control a much larger signal at another pair of terminals. This property is called gain. It can produce a stronger output signal, a voltage or current, which is proportional to a weaker input signal; that is, it can act as an amplifier. Alternatively, the transistor can be used to turn current on or off in a circuit as an electrically controlled switch, where the amount of current is determined by other circuit elements.
There are two types of transistors, which have slight differences in how they are used in a circuit. A bipolar transistor has terminals labeled base, collector, and emitter. A small current at the base terminal (that is, flowing between the base and the emitter) can control or switch a much larger current between the collector and emitter terminals. For a field-effect transistor, the terminals are labeledgate, source, and drain, and a voltage at the gate can control a current between source and drain.
The image represents a typical bipolar transistor in a circuit. Charge will flow between emitter and collector terminals depending on the current in the base. Because internally the base and emitter connections behave like a semiconductor diode, a voltage drop develops between base and emitter while the base current exists. The amount of this voltage depends on the material the transistor is made from, and is referred to as VBE.

Transistor as a switchEdit

 
BJT used as an electronic switch, in grounded-emitter configuration.
Transistors are commonly used in digital circuits as electronic switches which can be either in an "on" or "off" state, both for high-power applications such as switched-mode power supplies and for low-power applications such as logic gates. Important parameters for this application include the current switched, the voltage handled, and the switching speed, characterised by the rise and fall times.
In a grounded-emitter transistor circuit, such as the light-switch circuit shown, as the base voltage rises, the emitter and collector currents rise exponentially. The collector voltage drops because of reduced resistance from collector to emitter. If the voltage difference between the collector and emitter were zero (or near zero), the collector current would be limited only by the load resistance (light bulb) and the supply voltage. This is called saturation because current is flowing from collector to emitter freely. When saturated, the switch is said to be on.[40]
Providing sufficient base drive current is a key problem in the use of bipolar transistors as switches. The transistor provides current gain, allowing a relatively large current in the collector to be switched by a much smaller current into the base terminal. The ratio of these currents varies depending on the type of transistor, and even for a particular type, varies depending on the collector current. In the example light-switch circuit shown, the resistor is chosen to provide enough base current to ensure the transistor will be saturated.
In a switching circuit, the idea is to simulate, as near as possible, the ideal switch having the properties of open circuit when off, short circuit when on, and an instantaneous transition between the two states. Parameters are chosen such that the "off" output is limited to leakage currents too small to affect connected circuitry; the resistance of the transistor in the "on" state is too small to affect circuitry; and the transition between the two states is fast enough not to have a detrimental effect.

Transistor as an amplifierEdit

 
Amplifier circuit, common-emitter configuration with a voltage-divider bias circuit.
The common-emitter amplifier is designed so that a small change in voltage (Vin) changes the small current through the base of the transistor; the transistor's current amplification combined with the properties of the circuit means that small swings in Vinproduce large changes in Vout.
Various configurations of single transistor amplifier are possible, with some providing current gain, some voltage gain, and some both.
From mobile phones to televisions, vast numbers of products include amplifiers forsound reproduction, radio transmission, andsignal processing. The first discrete-transistor audio amplifiers barely supplied a few hundred milliwatts, but power and audio fidelity gradually increased as better transistors became available and amplifier architecture evolved.
Modern transistor audio amplifiers of up to a few hundred watts are common and relatively inexpensive.

Comparison with vacuum tubesEdit

Before transistors were developed, vacuum (electron) tubes (or in the UK "thermionic valves" or just "valves") were the main active components in electronic equipment.

AdvantagesEdit

The key advantages that have allowed transistors to replace vacuum tubes in most applications are
  • no cathode heater (which produces the characteristic orange glow of tubes), reducing power consumption, eliminating delay as tube heaters warm up, and immune from cathode poisoning and depletion;
  • very small size and weight, reducing equipment size;
  • large numbers of extremely small transistors can be manufactured as a singleintegrated circuit;
  • low operating voltages compatible with batteries of only a few cells;
  • circuits with greater energy efficiency are usually possible. For low-power applications (e.g., voltage amplification) in particular, energy consumption can be very much less than for tubes;
  • complementary devices available, providing design flexibility including complementary-symmetry circuits, not possible with vacuum tubes;
  • very low sensitivity to mechanical shock and vibration, providing physical ruggedness and virtually eliminating shock-induced spurious signals (e.g.,microphonics in audio applications);
  • not susceptible to breakage of a glass envelope, leakage, outgassing, and other physical damage.

LimitationsEdit

Transistors have the following limitations:
  • silicon transistors can age and fail;[41]
  • high-power, high-frequency operation, such as that used in over-the-air television broadcasting, is better achieved in vacuum tubes due to improved electron mobility in a vacuum;
  • solid-state devices are susceptible to damage from very brief electrical and thermal events, including electrostatic discharge in handling; vacuum tubes are electrically much more rugged;
  • sensitivity to radiation and cosmic rays (special radiation-hardened chips are used for spacecraft devices);
  • vacuum tubes in audio applications create significant lower-harmonic distortion, the so-called tube sound, which some people prefer.[42]

TypesEdit

BJT PNP symbol.svgPNPJFET P-Channel Labelled.svgP-channel
BJT NPN symbol.svgNPNJFET N-Channel Labelled.svgN-channel
BJTJFET
BJT and JFET symbols
JFET P-Channel Labelled.svgIGFET P-Ch Enh Labelled.svgIGFET P-Ch Enh Labelled simplified.svgIGFET P-Ch Dep Labelled.svgP-channel
JFET N-Channel Labelled.svgIGFET N-Ch Enh Labelled.svgIGFET N-Ch Enh Labelled simplified.svgIGFET N-Ch Dep Labelled.svgN-channel
JFETMOSFET enhMOSFET dep
JFET and MOSFET symbols
Transistors are categorized by
Hence, a particular transistor may be described as silicon, surface-mount, BJT, n–p–n, low-power, high-frequency switch.
A popular way to remember which symbol represents which type of transistor is to look at the arrow and how it is arranged. Within an NPN transistor symbol, the arrow will Not Point iN. Conversely, within the PNP symbol you see that the arrow Points iN Proudly.

Bipolar junction transistor (BJT)Edit

Bipolar transistors are so named because they conduct by using both majority and minority carriers. The bipolar junction transistor, the first type of transistor to be mass-produced, is a combination of two junction diodes, and is formed of either a thin layer of p-type semiconductor sandwiched between two n-type semiconductors (an n–p–n transistor), or a thin layer of n-type semiconductor sandwiched between two p-type semiconductors (a p–n–p transistor). This construction produces two p–n junctions: a base–emitter junction and a base–collector junction, separated by a thin region of semiconductor known as the base region (two junction diodes wired together without sharing an intervening semiconducting region will not make a transistor).
BJTs have three terminals, corresponding to the three layers of semiconductor—an emitter, a base, and a collector. They are useful in amplifiers because the currents at the emitter and collector are controllable by a relatively small base current.[44] In an n–p–n transistor operating in the active region, the emitter–base junction is forward biased (electrons andholes recombine at the junction), and electrons are injected into the base region. Because the base is narrow, most of these electrons will diffuse into the reverse-biased (electrons and holes are formed at, and move away from the junction) base–collector junction and be swept into the collector; perhaps one-hundredth of the electrons will recombine in the base, which is the dominant mechanism in the base current. By controlling the number of electrons that can leave the base, the number of electrons entering the collector can be controlled.[44] Collector current is approximately β (common-emitter current gain) times the base current. It is typically greater than 100 for small-signal transistors but can be smaller in transistors designed for high-power applications.
Unlike the field-effect transistor (see below), the BJT is a low-input-impedance device. Also, as the base–emitter voltage (VBE) is increased the base–emitter current and hence the collector–emitter current (ICE) increase exponentially according to the Shockley diode model and the Ebers-Moll model. Because of this exponential relationship, the BJT has a higher transconductance than the FET.
Bipolar transistors can be made to conduct by exposure to light, because absorption of photons in the base region generates a photocurrent that acts as a base current; the collector current is approximately β times the photocurrent. Devices designed for this purpose have a transparent window in the package and are called phototransistors.

Field-effect transistor (FET)Edit

 
Operation of a FET and its Id-Vg curve. At first, when no gate voltage is applied. There is no inversion electron in the channel, the device is OFF. As gate voltage increase, inversion electron density in the channel increase, current increase, the device turns on.
The field-effect transistor, sometimes called aunipolar transistor, uses either electrons (in n-channel FET) or holes (in p-channel FET) for conduction. The four terminals of the FET are named source, gate, drain, and body(substrate). On most FETs, the body is connected to the source inside the package, and this will be assumed for the following description.
In a FET, the drain-to-source current flows via a conducting channel that connects thesource region to the drain region. The conductivity is varied by the electric field that is produced when a voltage is applied between the gate and source terminals; hence the current flowing between the drain and source is controlled by the voltage applied between the gate and source. As the gate–source voltage (VGS) is increased, the drain–source current (IDS) increases exponentially for VGS below threshold, and then at a roughly quadratic rate (IDS ∝ (VGS  VT)2) (where VT is the threshold voltage at which drain current begins)[45] in the "space-charge-limited" region above threshold. A quadratic behavior is not observed in modern devices, for example, at the 65 nm technology node.[46]
For low noise at narrow bandwidth the higher input resistance of the FET is advantageous.
FETs are divided into two families: junction FET (JFET) and insulated gate FET (IGFET). The IGFET is more commonly known as ametal–oxide–semiconductor FET (MOSFET), reflecting its original construction from layers of metal (the gate), oxide (the insulation), and semiconductor. Unlike IGFETs, the JFET gate forms a p–n diode with the channel which lies between the source and drain. Functionally, this makes the n-channel JFET the solid-state equivalent of the vacuum tube triode which, similarly, forms a diode between its grid andcathode. Also, both devices operate in thedepletion mode, they both have a high input impedance, and they both conduct current under the control of an input voltage.
Metal–semiconductor FETs (MESFETs) are JFETs in which the reverse biased p–n junction is replaced by a metal–semiconductor junction. These, and the HEMTs (high-electron-mobility transistors, or HFETs), in which a two-dimensional electron gas with very high carrier mobility is used for charge transport, are especially suitable for use at very high frequencies (microwave frequencies; several GHz).
FETs are further divided into depletion-modeand enhancement-mode types, depending on whether the channel is turned on or off with zero gate-to-source voltage. For enhancement mode, the channel is off at zero bias, and a gate potential can "enhance" the conduction. For the depletion mode, the channel is on at zero bias, and a gate potential (of the opposite polarity) can "deplete" the channel, reducing conduction. For either mode, a more positive gate voltage corresponds to a higher current for n-channel devices and a lower current for p-channel devices. Nearly all JFETs are depletion-mode because the diode junctions would forward bias and conduct if they were enhancement-mode devices; most IGFETs are enhancement-mode types.

Usage of bipolar and field-effect transistorsEdit

The bipolar junction transistor (BJT) was the most commonly used transistor in the 1960s and 70s. Even after MOSFETs became widely available, the BJT remained the transistor of choice for many analog circuits such as amplifiers because of their greater linearity and ease of manufacture. In integrated circuits, the desirable properties of MOSFETs allowed them to capture nearly all market share for digital circuits. Discrete MOSFETs can be applied in transistor applications, including analog circuits, voltage regulators, amplifiers, power transmitters and motor drivers.

Other transistor typesEdit

 
Transistor symbol created on Portuguese pavement in the University of Aveiro.

Part numbering standards/specificationsEdit

The types of some transistors can be parsed from the part number. There are three major semiconductor naming standards; in each the alphanumeric prefix provides clues to type of the device.

Japanese Industrial Standard (JIS)Edit

JIS transistor prefix table
PrefixType of transistor
2SAhigh-frequency p–n–p BJT
2SBaudio-frequency p–n–p BJT
2SChigh-frequency n–p–n BJT
2SDaudio-frequency n–p–n BJT
2SJP-channel FET (both JFET and MOSFET)
2SKN-channel FET (both JFET and MOSFET)
The JIS-C-7012 specification for transistor part numbers starts with "2S",[52] e.g. 2SD965, but sometimes the "2S" prefix is not marked on the package – a 2SD965 might only be marked "D965"; a 2SC1815 might be listed by a supplier as simply "C1815". This series sometimes has suffixes (such as "R", "O", "BL", standing for "red", "orange", "blue", etc.) to denote variants, such as tighter hFE (gain) groupings.

European Electronic Component Manufacturers Association (EECA)Edit

The Pro Electron standard, the European Electronic Component Manufacturers Association part numbering scheme, begins with two letters: the first gives the semiconductor type (A for germanium, B for silicon, and C for materials like GaAs); the second letter denotes the intended use (A for diode, C for general-purpose transistor, etc.). A 3-digit sequence number (or one letter then 2 digits, for industrial types) follows. With early devices this indicated the case type. Suffixes may be used, with a letter (e.g. "C" often means high hFE, such as in: BC549C[53]) or other codes may follow to show gain (e.g. BC327-25) or voltage rating (e.g. BUK854-800A[54]). The more common prefixes are:
Pro Electron / EECA transistor prefix table
Prefix classType and usageExampleEquivalentReference
ACGermaniumsmall-signalAF transistorAC126NTE102ADatasheet
ADGermaniumAF power transistorAD133NTE179Datasheet
AFGermaniumsmall-signalRF transistorAF117NTE160Datasheet
ALGermaniumRF power transistorALZ10NTE100Datasheet
ASGermaniumswitching transistorASY28NTE101Datasheet
AUGermaniumpower switching transistorAU103NTE127Datasheet
BCSilicon, small-signal transistor ("general purpose")BC5482N3904Datasheet
BDSilicon, power transistorBD139NTE375Datasheet
BFSilicon, RF(high frequency)BJT or FETBF245NTE133Datasheet
BSSilicon, switching transistor (BJT orMOSFET)BS1702N7000Datasheet
BLSilicon, high frequency, high power (for transmitters)BLW60NTE325Datasheet
BUSilicon, high voltage (forCRThorizontal deflection circuits)BU2520ANTE2354Datasheet
CFGallium arsenidesmall-signalMicrowavetransistor (MESFETCF739Datasheet
CLGallium arsenideMicrowavepower transistor (FET)CLY10Datasheet

Joint Electron Device Engineering Council (JEDEC)Edit

The JEDEC EIA370 transistor device numbers usually start with "2N", indicating a three-terminal device (dual-gate field-effect transistors are four-terminal devices, so begin with 3N), then a 2, 3 or 4-digit sequential number with no significance as to device properties (although early devices with low numbers tend to be germanium). For example,2N3055 is a silicon n–p–n power transistor, 2N1301 is a p–n–p germanium switching transistor. A letter suffix (such as "A") is sometimes used to indicate a newer variant, but rarely gain groupings.

ProprietaryEdit

Manufacturers of devices may have their own proprietary numbering system, for exampleCK722. Since devices are second-sourced, a manufacturer's prefix (like "MPF" in MPF102, which originally would denote a MotorolaFET) now is an unreliable indicator of who made the device. Some proprietary naming schemes adopt parts of other naming schemes, for example a PN2222A is a (possibly Fairchild Semiconductor) 2N2222A in a plastic case (but a PN108 is a plastic version of a BC108, not a 2N108, while the PN100 is unrelated to other xx100 devices).
Military part numbers sometimes are assigned their own codes, such as the British Military CV Naming System.
Manufacturers buying large numbers of similar parts may have them supplied with "house numbers", identifying a particular purchasing specification and not necessarily a device with a standardized registered number. For example, an HP part 1854,0053 is a (JEDEC) 2N2218 transistor[55][56] which is also assigned the CV number: CV7763[57]

Naming problemsEdit

With so many independent naming schemes, and the abbreviation of part numbers when printed on the devices, ambiguity sometimes occurs. For example, two different devices may be marked "J176" (one the J176 low-power JFET, the other the higher-poweredMOSFET 2SJ176).
As older "through-hole" transistors are givensurface-mount packaged counterparts, they tend to be assigned many different part numbers because manufacturers have their own systems to cope with the variety inpinout arrangements and options for dual or matched n–p–n + p–n–p devices in one pack. So even when the original device (such as a 2N3904) may have been assigned by a standards authority, and well known by engineers over the years, the new versions are far from standardized in their naming.

C

Comments

Popular posts from this blog

CA

Telecommunication

Local aria network