Solar system
The Solar System[a] is the gravitationallybound system comprising the Sun and the objects that orbit it, either directly or indirectly.[b] Of those objects that orbit the Sun directly, the largest eight are theplanets,[c] with the remainder being smaller objects, such as dwarf planets and small Solar System bodies. Of the objects that orbit the Sun indirectly, the moons, two are larger than the smallest planet, Mercury.[d]
The Solar System formed 4.6 billion years agofrom the gravitational collapse of a giant interstellar molecular cloud. The vast majority of the system's mass is in the Sun, with the majority of the remaining mass contained inJupiter. The four smaller inner planets,Mercury, Venus, Earth and Mars, are terrestrial planets, being primarily composed of rock and metal. The four outer planets are giant planets, being substantially more massive than the terrestrials. The two largest, Jupiter and Saturn, are gas giants, being composed mainly of hydrogen and helium; the two outermost planets, Uranus and Neptune, areice giants, being composed mostly of substances with relatively high melting points compared with hydrogen and helium, calledvolatiles, such as water, ammonia andmethane. All eight planets have almost circular orbits that lie within a nearly flat disc called the ecliptic.
The Solar System also contains smaller objects.[e] The asteroid belt, which lies between the orbits of Mars and Jupiter, mostly contains objects composed, like the terrestrial planets, of rock and metal. Beyond Neptune's orbit lie the Kuiper belt andscattered disc, which are populations of trans-Neptunian objects composed mostly of ices, and beyond them a newly discovered population of sednoids. Within these populations are several dozen to possibly tens of thousands of objects large enough that they have been rounded by their own gravity.[10] Such objects are categorized asdwarf planets. Identified dwarf planets include the asteroid Ceres and the trans-Neptunian objects Pluto and Eris.[e] In addition to these two regions, various other small-body populations, including comets, centaurs andinterplanetary dust clouds, freely travel between regions. Six of the planets, at least four of the dwarf planets, and many of the smaller bodies are orbited by natural satellites,[f] usually termed "moons" after theMoon. Each of the outer planets is encircled by planetary rings of dust and other small objects.
The solar wind, a stream of charged particles flowing outwards from the Sun, creates a bubble-like region in the interstellar mediumknown as the heliosphere. The heliopause is the point at which pressure from the solar wind is equal to the opposing pressure of theinterstellar medium; it extends out to the edge of the scattered disc. The Oort cloud, which is thought to be the source for long-period comets, may also exist at a distance roughly a thousand times further than the heliosphere. The Solar System is located in the Orion Arm, 26,000 light-years from the center of the Milky Way.
Discovery and exploration

Andreas Cellarius's illustration of the Copernican system, from theHarmonia Macrocosmica (1660)
For most of history, humanity did not recognize or understand the concept of the Solar System. Most people up to the Late Middle Ages–Renaissance believed Earth to be stationary at the centre of the universe and categorically different from the divine or ethereal objects that moved through the sky. Although the Greek philosopher Aristarchus of Samos had speculated on a heliocentric reordering of the cosmos, Nicolaus Copernicus was the first to develop a mathematically predictive heliocentricsystem.[11][12] In the 17th century, Galileo Galilei, Johannes Kepler, and Isaac Newtondeveloped an understanding of physics that led to the gradual acceptance of the idea that Earth moves around the Sun and that the planets are governed by the same physical laws that govern Earth. The invention of the telescope led to the discovery of further planets and moons. Improvements in the telescope and the use of unmanned spacecraft have enabled the investigation of geological phenomena, such as mountains,craters, seasonal meteorological phenomena, such as clouds, dust storms and ice caps on the other planets.
Structure and composition
The principal component of the Solar System is the Sun, a G2 main-sequence star that contains 99.86% of the system's known mass and dominates it gravitationally.[13] The Sun's four largest orbiting bodies, the giant planets, account for 99% of the remaining mass, with Jupiter and Saturn together comprising more than 90%. The remaining objects of the Solar System (including the four terrestrial planets, the dwarf planets, moons, asteroids, andcomets) together comprise less than 0.002% of the Solar System's total mass.[g]
Most large objects in orbit around the Sun lie near the plane of Earth's orbit, known as theecliptic. The planets are very close to the ecliptic, whereas comets and Kuiper beltobjects are frequently at significantly greater angles to it.[17][18] All the planets, and most other objects, orbit the Sun in the same direction that the Sun is rotating (counter-clockwise, as viewed from above Earth's north pole).[19] There are exceptions, such asHalley's Comet.
The overall structure of the charted regions of the Solar System consists of the Sun, four relatively small inner planets surrounded by a belt of mostly rocky asteroids, and four giant planets surrounded by the Kuiper belt of mostly icy objects. Astronomers sometimes informally divide this structure into separate regions. The inner Solar System includes the four terrestrial planets and the asteroid belt. The outer Solar System is beyond the asteroids, including the four giant planets.[20]Since the discovery of the Kuiper belt, the outermost parts of the Solar System are considered a distinct region consisting of the objects beyond Neptune.[21]
Most of the planets in the Solar System have secondary systems of their own, being orbited by planetary objects called natural satellites, or moons (two of which, Titan and Ganymede, are larger than the planet Mercury), and, in the case of the four giant planets, by planetary rings, thin bands of tiny particles that orbit them in unison. Most of the largest natural satellites are in synchronous rotation, with one face permanently turned toward their parent.
All planets of the Solar System lie very close to the ecliptic. The closer they are to the Sun, the faster they travel (inner planets on the left, all planets except Neptune on the right).
Kepler's laws of planetary motion describe the orbits of objects about the Sun. Following Kepler's laws, each object travels along anellipse with the Sun at one focus. Objects closer to the Sun (with smaller semi-major axes) travel more quickly because they are more affected by the Sun's gravity. On an elliptical orbit, a body's distance from the Sun varies over the course of its year. A body's closest approach to the Sun is called itsperihelion, whereas its most distant point from the Sun is called its aphelion. The orbits of the planets are nearly circular, but many comets, asteroids, and Kuiper belt objects follow highly elliptical orbits. The positions of the bodies in the Solar System can be predicted using numerical models.
Although the Sun dominates the system by mass, it accounts for only about 2% of theangular momentum.[22][23] The planets, dominated by Jupiter, account for most of the rest of the angular momentum due to the combination of their mass, orbit, and distance from the Sun, with a possibly significant contribution from comets.[22]
The Sun, which comprises nearly all the matter in the Solar System, is composed of roughly 98% hydrogen and helium.[24] Jupiterand Saturn, which comprise nearly all the remaining matter, are also primarily composed of hydrogen and helium.[25][26] A composition gradient exists in the Solar System, created by heat and light pressurefrom the Sun; those objects closer to the Sun, which are more affected by heat and light pressure, are composed of elements with high melting points. Objects farther from the Sun are composed largely of materials with lower melting points.[27] The boundary in the Solar System beyond which those volatile substances could condense is known as thefrost line, and it lies at roughly 5 AU from the Sun.[5]
The objects of the inner Solar System are composed mostly of rock,[28] the collective name for compounds with high melting points, such as silicates, iron or nickel, that remained solid under almost all conditions in the protoplanetary nebula.[29] Jupiter and Saturn are composed mainly of gases, the astronomical term for materials with extremely low melting points and high vapour pressure, such as hydrogen, helium, and neon, which were always in the gaseous phase in the nebula.[29] Ices, like water, methane,ammonia, hydrogen sulfide, and carbon dioxide,[28] have melting points up to a few hundred kelvins.[29] They can be found as ices, liquids, or gases in various places in the Solar System, whereas in the nebula they were either in the solid or gaseous phase.[29] Icy substances comprise the majority of the satellites of the giant planets, as well as most of Uranus and Neptune (the so-called "ice giants") and the numerous small objects that lie beyond Neptune's orbit.[28][30] Together, gases and ices are referred to as volatiles.[31]
Distances and scales
The distance from Earth to the Sun is 1astronomical unit (150,000,000 km), or AU. For comparison, the radius of the Sun is 0.0047 AU (700,000 km). Thus, the Sun occupies 0.00001% (10−5 %) of the volume of a sphere with a radius the size of Earth's orbit, whereas Earth's volume is roughly one millionth (10−6) that of the Sun. Jupiter, the largest planet, is 5.2 astronomical units (780,000,000 km) from the Sun and has a radius of 71,000 km (0.00047 AU), whereas the most distant planet, Neptune, is 30 AU (4.5×109 km) from the Sun.
With a few exceptions, the farther a planet or belt is from the Sun, the larger the distance between its orbit and the orbit of the next nearer object to the Sun. For example, Venus is approximately 0.33 AU farther out from the Sun than Mercury, whereas Saturn is 4.3 AU out from Jupiter, and Neptune lies 10.5 AU out from Uranus. Attempts have been made to determine a relationship between these orbital distances (for example, the Titius–Bode law),[32] but no such theory has been accepted. The images at the beginning of this section show the orbits of the various constituents of the Solar System on different scales.
Some Solar System models attempt to convey the relative scales involved in the Solar System on human terms. Some are small in scale (and may be mechanical—calledorreries)—whereas others extend across cities or regional areas.[33] The largest such scale model, the Sweden Solar System, uses the 110-metre (361-ft) Ericsson Globe inStockholm as its substitute Sun, and, following the scale, Jupiter is a 7.5-metre (25-foot) sphere at Arlanda International Airport, 40 km (25 mi) away, whereas the farthest current object, Sedna, is a 10-cm (4-in) sphere in LuleÃ¥, 912 km (567 mi) away.[34][35]
If the Sun–Neptune distance is scaled to 100 metres, then the Sun would be about 3 cm in diameter (roughly two-thirds the diameter of a golf ball), the giant planets would be all smaller than about 3 mm, and Earth's diameter along with that of the other terrestrial planets would be smaller than a flea (0.3 mm) at this scale.[36]
Distances of selected bodies of the Solar System from the Sun. The left and right edges of each bar correspond to the perihelion andaphelion of the body, respectively, hence long bars denote high orbital eccentricity. The radius of the Sun is 0.7 million km, and the radius of Jupiter (the largest planet) is 0.07 million km, both too small to resolve on this image.
Formation and evolution
The Solar System formed 4.568 billion years ago from the gravitational collapse of a region within a large molecular cloud.[h] This initial cloud was likely several light-years across and probably birthed several stars.[38] As is typical of molecular clouds, this one consisted mostly of hydrogen, with some helium, and small amounts of heavier elements fused by previous generations of stars. As the region that would become the Solar System, known as the pre-solar nebula,[39] collapsed,conservation of angular momentum caused it to rotate faster. The centre, where most of the mass collected, became increasingly hotter than the surrounding disc.[38] As the contracting nebula rotated faster, it began to flatten into a protoplanetary disc with a diameter of roughly 200 AU[38] and a hot, dense protostar at the centre.[40][41] The planets formed by accretion from this disc,[42]in which dust and gas gravitationally attracted each other, coalescing to form ever larger bodies. Hundreds of protoplanets may have existed in the early Solar System, but they either merged or were destroyed, leaving the planets, dwarf planets, and leftover minor bodies.
Due to their higher boiling points, only metals and silicates could exist in solid form in the warm inner Solar System close to the Sun, and these would eventually form the rocky planets of Mercury, Venus, Earth, and Mars. Because metallic elements only comprised a very small fraction of the solar nebula, the terrestrial planets could not grow very large. The giant planets (Jupiter, Saturn, Uranus, and Neptune) formed further out, beyond the frost line, the point between the orbits of Mars and Jupiter where material is cool enough for volatile icy compounds to remain solid. The ices that formed these planets were more plentiful than the metals and silicates that formed the terrestrial inner planets, allowing them to grow massive enough to capture large atmospheres of hydrogen and helium, the lightest and most abundant elements. Leftover debris that never became planets congregated in regions such as the asteroid belt, Kuiper belt, and Oort cloud. The Nice model is an explanation for the creation of these regions and how the outer planets could have formed in different positions and migrated to their current orbits through various gravitational interactions.
Within 50 million years, the pressure and density of hydrogen in the centre of the protostar became great enough for it to beginthermonuclear fusion.[43] The temperature, reaction rate, pressure, and density increased until hydrostatic equilibrium was achieved: the thermal pressure equalled the force of gravity. At this point, the Sun became a main-sequence star.[44] The main-sequence phase, from beginning to end, will last about 10 billion years for the Sun compared to around two billion years for all other phases of the Sun's pre-remnant life combined.[45]Solar wind from the Sun created theheliosphere and swept away the remaining gas and dust from the protoplanetary disc into interstellar space, ending the planetary formation process. The Sun is growing brighter; early in its main-sequence life its brightness was 70% that of what it is today.[46]
The Solar System will remain roughly as we know it today until the hydrogen in the core of the Sun has been entirely converted to helium, which will occur roughly 5 billion years from now. This will mark the end of the Sun's main-sequence life. At this time, the core of the Sun will contract with hydrogen fusion occurring along a shell surrounding the inert helium, and the energy output will be much greater than at present. The outer layers of the Sun will expand to roughly 260 times its current diameter, and the Sun will become a red giant. Because of its vastly increased surface area, the surface of the Sun will be considerably cooler (2,600 K at its coolest) than it is on the main sequence.[45] The expanding Sun is expected to vaporize Mercury and render Earth uninhabitable. Eventually, the core will be hot enough for helium fusion; the Sun will burn helium for a fraction of the time it burned hydrogen in the core. The Sun is not massive enough to commence the fusion of heavier elements, and nuclear reactions in the core will dwindle. Its outer layers will move away into space, leaving a white dwarf, an extraordinarily dense object, half the original mass of the Sun but only the size of Earth.[47]The ejected outer layers will form what is known as a planetary nebula, returning some of the material that formed the Sun—but now enriched with heavier elements like carbon—to the interstellar medium.
Sun
The Sun is the Solar System's star and by far its most massive component. Its large mass (332,900 Earth masses)[48] produces temperatures and densities in its core high enough to sustain nuclear fusion of hydrogeninto helium, making it a main-sequencestar.[49] This releases an enormous amount ofenergy, mostly radiated into space aselectromagnetic radiation peaking in visible light.[50]
The Sun is a G2-type main-sequence star. Hotter main-sequence stars are more luminous. The Sun's temperature is intermediate between that of the hottest starsand that of the coolest stars. Stars brighter and hotter than the Sun are rare, whereas substantially dimmer and cooler stars, known as red dwarfs, make up 85% of the stars in the Milky Way.[51][52]
The Sun is a population I star; it has a higher abundance of elements heavier than hydrogen and helium ("metals" in astronomical parlance) than the older population II stars.[53] Elements heavier than hydrogen and helium were formed in the cores of ancient and exploding stars, so the first generation of stars had to die before the Universe could be enriched with these atoms. The oldest stars contain few metals, whereas stars born later have more. This high metallicity is thought to have been crucial to the Sun's development of a planetary systembecause the planets form from the accretion of "metals".[54]
Comments
Post a Comment