System testing

System testing

System testing

Page issues
System testing of software or hardware is testing conducted on a complete, integrated system to evaluate the system's compliance with its specified requirements. System testing falls within the scope of black-box testing, and as such, should require no knowledge of the inner design of the code or logic.[1]
As a rule, system testing takes, as its input, all of the "integrated" software components that have passed integration testing and also the software system itself integrated with any applicable hardware system(s). The purpose of integration testing is to detect any inconsistencies between the software units that are integrated together (calledassemblages) or between any of theassemblages and the hardware. System testing is a more limited type of testing; it seeks to detect defects both within the "inter-assemblages" and also within the system as a whole.

Testing the whole systemEdit

System testing is performed on the entire system in the context of a Functional Requirement Specification(s) (FRS) and/or aSystem Requirement Specification (SRS). System testing tests not only the design, but also the behaviour and even the believed expectations of the customer. It is also intended to test up to and beyond the bounds defined in the software/hardware requirements specification(s).[citation needed]

Types of tests to include in system testingEdit

The following examples are different types of testing that should be considered during System testing:
Although different testing organizations may prescribe different tests as part of System testing, this list serves as a general framework or foundation to begin with.

Software commonly used in system testingEdit

See alsoEdit

Software development process

Page issues
In software engineering, a software development process is the process of dividing software development work into distinct phases to improve design, product management, and project management. It is also known as a software development life cycle. The methodology may include the pre-definition of specific deliverables and artifacts that are created and completed by a project team to develop or maintain an application.[1]
Most modern development processes can be vaguely described as agile. Other methodologies include waterfall, prototyping,iterative and incremental development, spiral development, rapid application development, and extreme programming.
Some people consider a life-cycle "model" a more general term for a category of methodologies and a software development "process" a more specific term to refer to a specific process chosen by a specific organization. For example, there are many specific software development processes that fit the spiral life-cycle model. The field is often considered a subset of the systems development life cycle

HistoryEdit

The software development methodology (also known as SDM) framework didn't emerge until the 1960s. According to Elliott (2004) thesystems development life cycle (SDLC) can be considered to be the oldest formalized methodology framework for buildinginformation systems. The main idea of the SDLC has been "to pursue the development of information systems in a very deliberate, structured and methodical way, requiring each stage of the life cycle––from inception of the idea to delivery of the final system––to be carried out rigidly and sequentially"[2] within the context of the framework being applied. The main target of this methodology framework in the 1960s was "to develop large scale functional business systems in an age of large scale business conglomerates. Information systems activities revolved around heavy data processing and number crunching routines".[2]
Methodologies, processes, and frameworks range from specific proscriptive steps that can be used directly by an organization in day-to-day work, to flexible frameworks that an organization uses to generate a custom set of steps tailored to the needs of a specific project or group. In some cases a "sponsor" or "maintenance" organization distributes an official set of documents that describe the process. Specific examples include:
1970s
1980s
1990s
2000s
2010s
It is notable that since DSDM in 1994, all of the methodologies on the above list except RUP have been agile methodologies - yet many organisations, especially governments, still use pre-agile processes (often waterfall or similar). Software process and software quality are closely interrelated; some unexpected facets and effects have been observed in practice [3]
Since the early 2000s scaling agile delivery processes has become the biggest challenge for teams using agile processes.[4]
Among these another software development process has been established in open source. The adoption of these best practices known and established processes within the confines of a company is called inner source.

PracticesEdit

Several software development approaches have been used since the origin of information technology, in two main categories[citation needed]. Typically an approach or a combination of approaches is chosen by management or a development team[citation needed].
"Traditional" methodologies such as waterfall that have distinct phases are sometimes known as software development life cycle(SDLC) methodologies[citation needed], though this term could also be used more generally to refer to any methodology. A "life cycle" approach with distinct phases is in contrast to Agile approaches which define a process of iteration, but where design, construction, and deployment of different pieces can occur simultaneously[citation needed].

Continuous integrationEdit

Continuous integration is the practice of merging all developer working copies to a shared mainline several times a day.[5] Grady Booch first named and proposed CI in his 1991 method,[6] although he did not advocate integrating several times a day. Extreme programming (XP) adopted the concept of CI and did advocate integrating more than once per day – perhaps as many as tens of times per day.

PrototypingEdit

Software prototyping is about creating prototypes, i.e. incomplete versions of the software program being developed.
The basic principles are:[1]
  • Prototyping is not a standalone, complete development methodology, but rather an approach to try out particular features in the context of a full methodology (such as incremental, spiral, or rapid application development (RAD)).
  • Attempts to reduce inherent project risk by breaking a project into smaller segments and providing more ease-of-change during the development process.
  • The client is involved throughout the development process, which increases the likelihood of client acceptance of the final implementation.
  • While some prototypes are developed with the expectation that they will be discarded, it is possible in some cases to evolve from prototype to working system.
A basic understanding of the fundamental business problem is necessary to avoid solving the wrong problems, but this is true for all software methodologies.

Incremental developmentEdit

Various methods are acceptable for combining linear and iterative systems development methodologies, with the primary objective of each being to reduce inherent project risk by breaking a project into smaller segments and providing more ease-of-change during the development process.
There are three main variants of incremental development:[1]
  1. A series of mini-Waterfalls are performed, where all phases of the Waterfall are completed for a small part of a system, before proceeding to the next increment, or
  2. Overall requirements are defined before proceeding to evolutionary, mini-Waterfall development of individual increments of a system, or
  3. The initial software concept, requirements analysis, and design of architecture and system core are defined via Waterfall, followed by incremental implementation, which culminates in installing the final version, a working system.

Rapid application developmentEdit

 
Rapid Application Development (RAD) Model
Rapid application development (RAD) is a software development methodology, which favors iterative development and the rapid construction of prototypes instead of large amounts of up-front planning. The "planning" of software developed using RAD is interleaved with writing the software itself. The lack of extensive pre-planning generally allows software to be written much faster, and makes it easier to change requirements.
The rapid development process starts with the development of preliminary data modelsand business process models usingstructured techniques. In the next stage, requirements are verified using prototyping, eventually to refine the data and process models. These stages are repeated iteratively; further development results in "a combined business requirements and technical design statement to be used for constructing new systems".[7]
The term was first used to describe a software development process introduced byJames Martin in 1991. According to Whitten (2003), it is a merger of various structured techniques, especially data-driven Information Engineering, with prototyping techniques to accelerate software systems development.[7]
The basic principles of rapid application development are:[1]
  • Key objective is for fast development and delivery of a high quality system at a relatively low investment cost.
  • Attempts to reduce inherent project risk by breaking a project into smaller segments and providing more ease-of-change during the development process.
  • Aims to produce high quality systems quickly, primarily via iterative Prototyping (at any stage of development), active user involvement, and computerized development tools. These tools may include Graphical User Interface (GUI) builders, Computer Aided Software Engineering (CASE) tools, Database Management Systems (DBMS), fourth-generation programming languages, code generators, and object-oriented techniques.
  • Key emphasis is on fulfilling the business need, while technological or engineering excellence is of lesser importance.
  • Project control involves prioritizing development and defining delivery deadlines or “timeboxes”. If the project starts to slip, emphasis is on reducing requirements to fit the timebox, not in increasing the deadline.
  • Generally includes joint application design(JAD), where users are intensely involved insystem design, via consensus building in either structured workshops, or electronically facilitated interaction.
  • Active user involvement is imperative.
  • Iteratively produces production software, as opposed to a throwaway prototype.
  • Produces documentation necessary to facilitate future development and maintenance.
  • Standard systems analysis and design methods can be fitted into this framework


Comments

Popular posts from this blog

CA

Telecommunication

Local aria network