Semi conductors
Semi Conductors
The semiconductor industry is the aggregate collection of companies engaged in thedesign and fabrication of semiconductordevices. It formed around 1960, once the fabrication of semiconductors became a viable business. It has since grown to be a $335.2 billion industry in 2015.[1]
Industry structure
The global semiconductor industry is dominated by USA, Japan, Israel, South Korea, Taiwan, Singapore, China and European Union.
Unique features of the industry include continuous growth but in a cyclical pattern with high volatility. While the current 20 year annual average growth of the semiconductor industry is on the order of 13%, this has been accompanied by equally above-average market volatility, which can lead to significant if not dramatic cyclical swings. This has required the need for high degrees of flexibility and innovation in order to constantly adjust to the rapid pace of change in the market as many products embedding semiconductor devices often have a very short life cycle.
At the same time, the rate of constant price-performance improvement in the semiconductor industry is staggering. As a consequence, changes in the semiconductor market not only occur extremely rapidly but also anticipate changes in industries evolving at a slower pace. The semiconductor industry is widely recognized as a key driver and technology enabler for the whole electronics value chain.[2]
Largest companies
The following are the 10 largest semiconductor companies as ranked in January 2016 by Gartner based on 2015 revenue.[3]
- Intel
- Samsung Electronics
- SK Hynix
- Qualcomm
- Micron Technology
- Texas Instruments
- Toshiba
- Broadcom
- STMicroelectronics
- Infineon Technologies
An extrinsic semiconductor is one that has been doped, that is, into which a doping agenthas been introduced, giving it different electrical properties than the intrinsic (pure) semiconductor. This doping involves adding dopant atoms to an intrinsic semiconductor, which changes the electron and hole carrier concentrations of the semiconductor atthermal equilibrium, the temperature at which two adjacent substances exchange no heat energy. Dominant carrier concentrations in an extrinsic semiconductor classify it as either an n-type or p-type semiconductor. The electrical properties of extrinsic semiconductors make them essential components of many electronic devices.
Semiconductor doping
Semiconductor doping is the process that changes an intrinsic semiconductor to an extrinsic semiconductor. During doping, impurity atoms are introduced to an intrinsic semiconductor. Impurity atoms are atoms of a different element than the atoms of the intrinsic semiconductor. Impurity atoms act as either donors or acceptors to the intrinsic semiconductor, changing the electron and hole concentrations of the semiconductor. Impurity atoms are classified as donor or acceptor atoms based on the effect they have on the intrinsic semiconductor.
Donor impurity atoms have more valence electrons than the atoms they replace in the intrinsic semiconductor lattice. Donor impurities "donate" their extra valence electrons to a semiconductor's conduction band, providing excess electrons to the intrinsic semiconductor. Excess electrons increase the electron carrier concentration (n0) of the semiconductor, making it n-type.
Acceptor impurity atoms have fewer valence electrons than the atoms they replace in the intrinsic semiconductor lattice. They "accept" electrons from the semiconductor's valence band. This provides excess holes to the intrinsic semiconductor. Excess holes increase the hole carrier concentration (p0) of the semiconductor, creating a p-type semiconductor.
Semiconductors and dopant atoms are defined by the column of the periodic table in which they fall. The column definition of the semiconductor determines how many valence electrons its atoms have and whether dopant atoms act as the semiconductor's donors or acceptors.
Group III-V semiconductors, the compound semiconductors, use group VI atoms as donors and group II atoms as acceptors. Group III-V semiconductors can also usegroup IV atoms as either donors or acceptors. When a group IV atom replaces the group III element in the semiconductor lattice, the group IV atom acts as a donor. Conversely, when a group IV atom replaces the group V element, the group IV atom acts as an acceptor. Group IV atoms can act as both donors and acceptors; therefore, they are known as amphoteric impurities.
The two types of semiconductor
N-type semiconductors
N-type semiconductors have a larger electron concentration than hole concentration. The term n-type comes from the negative charge of the electron. In n-type semiconductors, electrons are the majority carriers and holes are the minority carriers. N-type semiconductors are created by doping an intrinsic semiconductor with donor impurities (or doping a p-type semiconductor as done in the making of CMOS chips). A common dopant for n-type silicon is phosphorus. In an n-type semiconductor, the Fermi level is greater than that of the intrinsic semiconductor and lies closer to theconduction band than the valence band.
P-type semiconductors
As opposed to n-type semiconductors, p-type semiconductors have a larger hole concentration than electron concentration. The term p-type refers to the positive charge of the hole. In p-type semiconductors, holes are the majority carriers and electrons are the minority carriers. P-type semiconductors are created by doping an intrinsic semiconductor with acceptor impurities (or doping an n-type semiconductor). A common p-type dopant for silicon is boron. For p-type semiconductors the Fermi level is below the intrinsic Fermi level and lies closer to the valence band than the conduction band.
Use of extrinsic semiconductors
Extrinsic semiconductors are components of many common electrical devices. A semiconductor diode (devices that allow current in only one direction) consists of p-type and n-type semiconductors placed injunction with one another. Currently, most semiconductor diodes use doped silicon or germanium.
Transistors (devices that enable current switching) also make use of extrinsic semiconductors. Bipolar junction transistors(BJT), which amplify current, are one type of transistor. The most common BJTs are NPN and PNP type. NPN transistors have two layers of n-type semiconductors sandwiching a p-type semiconductor. PNP transistors have two layers of p-type semiconductors sandwiching an n-type semiconductor.
Field-effect transistors (FET) are another type of transistor which amplify current implementing extrinsic semiconductors. As opposed to BJTs, they are called unipolar because they involve single carrier type operation – either N-channel or P-channel. FETs are broken into two families, junction gate FET (JFET), which are three terminal semiconductors, and insulated gate FET (IGFET), which are four terminal semiconductors.
Other devices implementing the extrinsic semiconductor:
Comments
Post a Comment